Quadruplex-forming sequences occupy discrete regions inside plant LTR retrotransposons
نویسندگان
چکیده
Retrotransposons with long terminal repeats (LTR) form a significant proportion of eukaryotic genomes, especially in plants. They have gag and pol genes and several regulatory regions necessary for transcription and reverse transcription. We searched for potential quadruplex-forming sequences (PQSs) and potential triplex-forming sequences (PTSs) in 18 377 full-length LTR retrotransposons collected from 21 plant species. We found that PQSs were often located in LTRs, both upstream and downstream of promoters from which the whole retrotransposon is transcribed. Upstream-located guanine PQSs were dominant in the minus DNA strand, whereas downstream-located guanine PQSs prevailed in the plus strand, indicating their role both at transcriptional and post-transcriptional levels. Our circular dichroism spectroscopy measurements confirmed that these PQSs readily adopted guanine quadruplex structures-some of them were paralell-stranded, while others were anti-parallel-stranded. The PQS often formed doublets at a mutual distance of up to 400 bp. PTSs were most abundant in 3'UTR (but were also present in 5'UTR). We discuss the potential role of quadruplexes and triplexes as the regulators of various processes participating in LTR retrotransposon life cycle and as potential recombination sites during post-insertional retrotransposon-based genome rearrangements.
منابع مشابه
TEnest: automated chronological annotation and visualization of nested plant transposable elements.
Organisms with a high density of transposable elements (TEs) exhibit nesting, with subsequent repeats found inside previously inserted elements. Nesting splits the sequence structure of TEs and makes annotation of repetitive areas challenging. We present TEnest, a repeat identification and display tool made specifically for highly repetitive genomes. TEnest identifies repetitive sequences and r...
متن کاملEpigenetic activation of genomic retrotransposons
Retrotransposons outnumber the genes in large plant genomes, thereby comprising the bulk of the genome. They are largely quiescent during development, but become more active under stress conditions. These elements spread throughout the genome by a process termed retrotransposition, which includes transcription of an element into RNA, reverse transcription into cDNA, and reinsertion of the copie...
متن کاملRapid isolation of plant Ty1-copia group retrotransposon LTR sequences for molecular marker studies.
The terminal sequences of long-terminal repeat (LTR) retrotransposons are a source of powerful molecular markers for linkage mapping and biodiversity studies. The major factor limiting the widespread application of LTR retrotransposon-based molecular markers is the availability of new retrotransposon terminal sequences. We describe a PCR-based method for the rapid isolation of LTR sequences of ...
متن کاملLTRtype, an Efficient Tool to Characterize Structurally Complex LTR Retrotransposons and Nested Insertions on Genomes
The amplification and recombination of long terminal repeat (LTR) retrotransposons have proven to determine the size, organization, function, and evolution of most host genomes, especially very large plant genomes. However, the limitation of tools for an efficient discovery of structural complexity of LTR retrotransposons and the nested insertions is a great challenge to confront ever-growing a...
متن کاملMGEScan-non-LTR: computational identification and classification of autonomous non-LTR retrotransposons in eukaryotic genomes
Computational methods for genome-wide identification of mobile genetic elements (MGEs) have become increasingly necessary for both genome annotation and evolutionary studies. Non-long terminal repeat (non-LTR) retrotransposons are a class of MGEs that have been found in most eukaryotic genomes, sometimes in extremely high numbers. In this article, we present a computational tool, MGEScan-non-LT...
متن کامل